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Abstract

This paper describes a Monte Carlo sampling plan for estimating how a function

varies in response to changes in its arguments. Most notably, the plan effects this

sensitivity analysis by applying the acceptance-rejection technique to data sampled at only

one specified setting for the arguments, thus saving considerable computing time when

compared to alternative methods. The plan which applies for a 0-1 response on each

replication has immediate application when estimating variation in system performance

measures in reliability analysis.

The paper derives the variances of the proposed estimators and hows how 'Lo use

worst case bounds on these or on corresponding coefficients of variation to choose the

arguments, at which to sample, that minimize the worst case bounds. Individual and

simultaneous confidence intervals are derived and an example based on s-t reliability

illustrates the method. The paper also compares the proposed method and an alternative

Monte Carlo approach that uses an importance function.
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one specified setting for the arguments, thus saving considerable computing time when

compared to alternative methods. The plan which applies for a 0-1 response on each

replication has immediate application when estimating variation in system performance

measures in reliability analysis.
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Many Monte Carlo sampling experiments aim at estimating quantities of the form

g(q) = E O(z)P(zq) (1)
ZE W

where {(x)} is a 0-1 binary function, {P(zq), zEAt} is a probability mass function

(p.m.f.) with given parameter vector q, and domain of support J so large as to make

exact evaluation via (1) intractable. Occasionally, the objective is to estimate the function

{g(q), q E.2} where 2 = {q1,...,qw}. Problems of this type arise in reliability theory where

g(q) represents system reliability and qj = (qjl,...,qj,) denotes the relidbilitie of

components of types 1 through r which compose the system in the jth of w component

reliability vectors of interest. Analysis of g(q),...,g(qw) enables one to assess the benefits

of the alternative reliabilities vectors q1,...,q w on system reliability.

Although one can simply run w experiments, sampling from {P(, q1)},...,{P(, qw)}

to produce estimates of g(q1),...,g(q.), respectively, a more efficient method samples from

{P(xp)} on a single experiment and uses these data together with the Monte Carlo

importance function technique or the acceptance-rejection technique to produce the desired

estimates. These approaches are not new, the importance function technique being implicit

in Kahn (1950) and Kahn and Harris (1949) and the acceptance-rejection technique being

implicit in von Neumann (1949). Beckman and McKay (1987) have more recently

discussed both methods. However, until recently little was known about how the binary

property of {p(z)} affected the sampling properties of these techniques for estimating (1).

Fishman (1987) provides a comprehensive account of these properties for the importance

function approach. The present paper focuses on the acceptance-rejection method and

provides a comprehensive description of the sampling properties of the resulting estimators

that exploit the binary property of {O(z)} and the use of a modified
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p.m.f. {Q(z,p)}, based on {P(zp)} and information on bounds for {4(z)} and

{g(q), qE2}, to sample the data. This last modification allows the acceptance-rejection

method to work with considerably improved efficiency. Although the paper focuses on

applying the proposed technique to reliability estimation, we emphasize that the

methodology applies to the considerably wider class of problems with binary { o(z)}.

Section 1 gives basic definitions and Section 2 describes estimation at a single point.

Section 3 then describes how to perform function estimation using the acceptance-rejection

method. Section 4 shows how to choose the design parameter p to minimize either the

worst-case variance or the coefficient of variation of the resulting function estimator,

thereby dramatically increasing the efficiency of the proposed Monte Carlo procedure.

Sections 5 and 6 show that even in the worst case, the proposed technique is at least as

good as crude Monte Carlo sampling. Sections 7 and 8 derive individual and simultaneous

confidence intervals. Section 9 illustrates the proposed technique with an example and

Section 10 compares the characteristics of the acceptance-rejection method with those of

the importance function method.

1. Problem Setting

Consider a network G = (YX ) with node set Y and edge set X. Assume that

nodes function perfectly and that edges fail randomly and independently. Let

r = number of distinct types of edges

q, = probability that an edge of type i functions i = 1,...,r

q =(ql,...,qd)

k = number of edges of type i

k= k k

e =jthedgeoftypei j=1,...,ki ; i=1,...,r

z = 1 if edge eI functions

= 0 otherwise
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k.
x. = E' x. = number of functioning edges of type i

j=l 1

z = (xill .."Ix k I'";rli""rkr

,W= set of all edge states z
r k. r x. k.-x.

P(xq) = P(x,kq) = rI l[zVq.+(1-x( 1-qj)] = H q(I-q 2 ) (2)
i=1 j=l

= p.m.f. of state z Eff

O(z) = 1 if the system functions when in state z

= 0 otherwise

g(q) = E O(x) P(A~q) (3)

zE ,

= probability that the system functions.

We also assume that G describes a coherent system. A system of components is coherent

if its structure function { (x)} is nondecreasing in each argument and each component is

relevant (Barlow and Proschan 1981, p. 6).

Let .2 denote a set of w component reliability vectors of interest. Then the

purpose of analysis is to estimate the s-t reliability function {g(q), q E.}.

2. Estimation at a Point

Crude Monte Carlo sampling offers a baseline against which potentially more

efficient sampling plans can be compared. Let X('),...,X (K) denote K independent samples

drawn from { P(xq), x A$}. Then

Kg, q) = )X i ) (4)

is an unbiased estimator of g(q) with
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var iK( q) = g(q)[1-g(q)]/K. (5)

To compute gK$q), one performs K trials sampling X from {P(,kq)} and evaluates

O(X) on each trial. The corresponding mean total computation time has the form

q)) = o + 1o'l+o,2 1 Jl+a3(G" qf0

where

a 3(4 q) = E P(z'q) qz)

and

C(z) = expected time to evaluate O(z).

The quantities %, a,, a2 and a3(4 q) are machine dependent.

We now show how to modify the sampling plan to improve statistical efficiency

using information on bounds as described in Fishman (1986). Suppose that there exist 0-1

binary functions {¢L(X), xE} and {¢/z),zE.$} such that

eL(X) _ O(z) _ OUX) V zE=

Then g(q) has lower and upper bounds gL(q) and gg(q), respectively, where

g,(q) = E O,(z) P(zq) iE{L,U}.
SE ie

Suppose that one now samples XA'),...,P'h1 independently from the modified p.m.f.
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Q(zq) = [ P(] P q) zEX (6)

where

A(q) = 0) - gL(q).

Then

K 
(7)

gK (q) = gL(q) + A(q) 7?_E1 (~ )

is also an unbiased estimator of g(q), but with variance

var bKq) = (gU)-g(q)(g(q)-gL(q)/g < a 2 (q)/4K. (8)

Compared to crude Monte Carlo sampling, one has

var g K2(q)  2
vr D(q) = 1/ g(q)f1gq 2{g 1gL(q)]}i (9)

var g A4 q)

> 1,

indicating that gK q) always has a variance no larger that var g.q).

To compute gK(q ) using precomputed bounds, one performs K trials sampling X

from {Q(xq)} and evaluates O(X) on each trial Here mean total time assumes the form
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T(gK(q)) = 00 + 10 #21 +a3 ( -WIp)/A(q)]

where

[0 {zE,$: €L($)0 and C/z)=l}

and 00, and 02 denote machine dependent constants.

Observe that

K(q) = K var . (q)/varg Xq)

denotes the number of observations one would have to take with crude Monte Carlo to

achieve the same variance that arises in K observations using {Q(;p)}. Then Al(q) =

T(9g (q)(q))/ T(gg(q)) measures the efficiency of gg(q) relative to gg q) and for large K

and 1i1 has the approximate form

A,(q) a [5 2+a3(J, q)/(q) I Irq (10)
#2 a (J0~q1A~~jj.[gV(q)-g( q)] [g( q)-gL( q)]

a2+a 3(J q)/ 1)] D(q)

02+a 3 ( 0 I, q) / A q) IX

where (9) defines D(q) _ 1. A ratio greater than unity favors the alternative sampling

plan. Experience (Fishman 1986) has shown this to be the case for moderate and high

component reliabilities for s-t reliability.
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3. Function Estimation Based on the Acceptance-Rejection Method

To estimate 9(q) for each component reliability vector q E 1 = {q1,...,qw}, one

can perform w separate experiments, sampling from {Q(z;qi)} in (6) on the ith

experiment for i = 1,...,w. This procedure incurs the cost of running w individual

sampling experiments. However, one can actually avoid this cost by performing a single

experiment, sampling data from {Q(xp)} and then using these same data to estimate

9(q1),...,qqw) . We later show that if the component reliability vector p at which

sampling occurs belongs to .2, the proposed approach leads to estimates of specified

accuracy at a cost no larger than that incurred by performing all w individual experiments

to achieve the identical accuracies.

Consider the p.m.f.

Az ) = ab( z) c( x) x E XY (1

where

c(z) ? O, E c() = 1, O< b(x) 1 and a= 1/ E b(x) c(z).
X Z E W

Suppose one samples X from the p.m.f. {c(z)} and Z from V'(0,1). If Z < b(X), then

X has the p.m.f. {ftx)} in (11). This acceptance-rejection method of sampling is due to

von Neumann (1949). For the current problem,

c(Z) = Q(;p)

b(x) = R(x,q,p)/R (qp), (12)

where
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R(zq,p) = P(z,q)/P(zp)

r -i[( ) -r
11 (q./p.) 1-q.)/(1-p) (13)
i=1

and

R (qp) = maxR(;q,p) s.t. bL(x)=0 and 0v4=l.
zE,X$

The quantity

a = (p) R*(k,q,p)/A(q) (14)

denotes the mean number of trials required until one successfully obtains an X from

{ Q(zq)}.

A small modification increases the efficiency of this procedure. Let

Ro(q,p) = maxR(Aq,p) s.t. ¢(x)=O and 0,/x)=l (15a)
ZEX

Rl(q,p) = maxR(x,q,p) s.t. xL(z)=O and O(x)=l (15b)

and

F(;,i,q,p) = R(x,q,p)/R(qp) i= 0,1. (16)

Suppose one samples X from {Q(zp)}, samples Z from V(0,1) and determines O(X).

If Z< F(XO(X),qp), then X has the p.m.f. {Q(xzq)} with mean number of trials until
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success

g~)-()g(P) -gL(P)
a = ZA q Ro(q'p) + " A(q) RI(q'p)

< A(p) R*(pI~)

since max [9(p) - 9(p), 9(p) - 9L(P)] A(p) and max [Ro(qp), RI(qp)] < R*(qp). The

computations of Ro(qp) and Rl(qp) depend on the choice of bounding functions

{L(X)} and {0(x)} and are discussed in the example in Section 9.

We next describe the statistical properties of data generated by the

acceptance-rejection method.

Theorem 1. Let X and Z denote samples drawn from {Q(z,p)} in (6) and V(0,1)

respectively. Define R 0  Ro(qp), R1 - RI(qp) ,

q(,u,q,p) = 1 if 0 < u < R(z,q,p)/R i= 0,1 (17)

AO(Au,q,p) = gvq) - A(p)Ro[1-(z)]p (z,u,qp) (18a)

and

p1(Z,u,q,p) = gL(q) + A(p)RO(x)V O(z) (xu,qp). (18b)

Then
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i. E{[1-0(X)]V O(X(XZqp)} = [g~/q) - g(q)]/zA(p)R 0

ii. E[q(XvO(X(XZlq'P)] = [9(q) - gL(q)]I A(p)R 1

iii. Eps.(XZqp) = g(q) i = 0,1

iv. var iu(XZqp) =[g~(q) - g(q)][g(q) - 9g(q) + p)I

t vq) + [(g(q) - g(q)j[1A(p)R 0- A(q)]

V. var p(XZq~P) = [(q) - 9L( q)I[A.(p)R 1 + 9L(q) - g(q)]

L vq+ 9q- (q)][A(p)Rl- A~q)]

vi. CoVI'q0(XZq'p), 1 (XZq'p) = v~q) =I )gq]9q-LqI

Proof. Straightforwardly,

E{11-0(X)Is (X(X,,qp)} pr[O(X) = 0, cp(XZqp) = 11

-ZE$ A(yP) z~

=[g~(q) - qj1p)I

establishing i. Part ii follows in analogous fashion and the proofs of parts iii through vi

are then immediately obvious.
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Suppose one performs K independent replications generating X(1),...,X(A) from (6)

and Z(1),...,Z (K ) from V(0,1). Then

9 q~) = o i= 0,1 (19)
j= 1

have expectations g(q) with var giK(qp) = var Ap(X,Z,q,p)/K. Observe that the

inequalities var p0(X,Z,q,p) > v(q) and var p1 (X,Z,q,p)] > v(q) for q # p, when they

occur, signal an inflation of variances over what obtains if one were to sample from

{Q( q)} directly. Therefore, it is of interest to assess how much these variances and

corresponding coefficients of variation grow when using the proposed acceptance-rejection

method. Theorems 2 and 3 provide worst case upper bounds.

Theorem 2. Let X and Z denote samples from {Q(zp)} in (6) and V(0,1)

respectively. Then

[ A(p)R,I'/4 if A(q) > A(p)R,/2

var p.(X,Z,q,p) _ M(qp) = (20)

[A( q)[A(p)Ri-A(q)] if A(q) _A(p)R/2

i = 0,1.

Proof. Since gL(q) S g(q) S guq), A = [gq(q) - g(q)][g(q) - guq) + A(p)R0 ] has its

maximum at g (q) = gL(q) + max[0,A(q) - A(p)RO/2], from which (20) follows for i = 0.

Similarly, B = Ig(q) - gL(q)][A(p)R1 + gL(q) - g(q)] has its maximum at g*(q) = geq) -

max[0,A(q) - A(p)R1/2], from which (20) follows for i = 1.
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Observe that evaluation of (20) for i = 0,1, prior to sampling, enables one to

determine which estimator has the smallest worst case variance.

Theorem 3. Let

-t(q,p) = [var p.j(XZqp)j1/[1-9(q)] = 0,1.

Then

max -f 2(qp) = N0(qp) = [A(p)R 012/4[1-g~,q)+A(p)R 0 J[1-g9/q)] (21a)

if A(p)R 0JI1-g~(q)-A(q)I 2A(q)fl-g~(q)I

= AC q) [A(p) R0 -A( q)] I[1-gL( q)]2 otherwise (21b)

and

max 7 (qp) = N (qp) = [A(p)R 1I2/4[l-g q)-A (p)R 1]1-J () (22a)

if A(p)R 11[1-gL(q)+A(q)1 2A(q)[1-9L(q)]

= A( q)[A(p)R 1-A(q)j/[1- 9g/q)]2  otherwise. (22b)

Proof. We give the proof for max -to2 (qp). Let

A = var pz0(XZqp)]/[1-g(q 12 . (23)

Then
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OA -g(q) {2[1-g q)]+A(,v)Ro}+2gU(q) [1-g qfl-A(P)Ro[1-2g q)]

= [ 1-g(q)13

Since OA/Og(q)I <0 and OA/80j(q)= Oatg(w) - gv( )

g*(q) = {2g 1$q)[1-g(q)] - A(p)Ro[1-2guq)l}/2[1-g q)l+A(P)Ro] } ,

A has its maximum at g*(q) if g*(q) . gL(q), which upon substitution of g*(q) for g(q) in

(23) gives (21a). If g*(q) < 9L(q) then the maximum occurs at gL(q), giving (21b). A

completely analogous result holds for max 712( qp).

4. Choosing the Sampling Probabilities p

The results in Theorems 2 and 3 play a critical role in deciding at which component

reliability vector p one should conduct the Monte Carlo sampling experiment. For each

i = 0,1, one procedure finds the piE.2 that minimizes max M.(qp) where (20) defines
qE2

M,(q,p) as the worst case var p,(X,Z,q,p). Then one uses

P = P0  if max Mo(qpo) < max Ml(q,p1 )
qE.2 qE.2

(24)

= Pl otherwise,

so that sampling from { Q(z,p)} with p as in (24) minimizes the worst case variance that

can arise. Finding p, takes w? evaluations of M.(qp). Also, note that

K, = [min[max Mo(qpo), max M(q,p1 )]/v,]
qE.2 qE.2
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gives the worst case sample size required to obtain estimates of g(q),...,g(qw) with

variances no greater than a specified v.. This valuable information can assist a user of the

Monte Carlo method before any sampling begins.

The proposed technique can also accommodate a relative accuracy specification.

For i = 0,1, an alternative procedure finds the pfE. that minimizes max N.(q,p) where
qE2

(21) and (22) define No(qp ) and Nl(qp), and then uses

P = P0  if max NO(q,p 0 ) S max N1(q,p l )
qEI qE2

= P, otherwise.

Sampling from {Q(z,p)} with this p minimizes the worst case coefficient of variance. Also,

K.. = rmin[max No(qp 0 ), max N1(q,pj)]/uj] (25)
qE-2 qEt

provides the worst case sample size needed to estimate 9(q),...,g(qw) with coefficients of

variation no greater than a specified u*.

5. Efficiency

Naturally, the appeal of any proposed sampling plan depends on the cost saving it

offers, when achieving a specified accuracy as compared to other more conventional

methods. These cost considerations have two components, one based on variances and the

other based on computer times expended per replication. Theorem 4 derives an expression

for the smallest variance ratio that one can expect to achieve when comparing a crude

Monte Carlo estimate gAq) to an estimate giK(~q p) based on the proposed method. This

smallest ratio is analogous to D(q) in (9) and reveals the least favorable circumstance that

one can expect to encounter. The ratio can be computed prior to sampling, thereby



providing a lower bound on what to expect.

Theorem 4. Let Y denote a sample from I P(Azp) }, X a sample drawn from I Q(Azp)}

and Z a sample drawn from %(40,l). Let

B, (g(q),p) = var O( Y)/var p,(XZqp) = 0,1.

Then

min B0(g(q),p) = 1/{ )[-~)A~)OI-f1gq][~)Ap)oll

(26)

= gL q) (1-gL(q)]I/A(q) tL~p)R0-A( q)] otherwise

and

min B1(()p q)=pRJ2q+~)I 11

(27)

= g q)[1 -g~/q)]/i (q)[zA4p)R 1 -A(q)] otherwise.
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Proof. We prove the result for B(g(q),p)o Observe that aB1/ag(q) = 0 has roots

/ 1+ -g q . j19 (q Ap

r.1/ g+(q) gL(q)+A ( p)R 1  i= 1,2. (28)

If A(p)R 1  1- gL(q), the roots are real with either r2 _ 0 or r2  1 and gL(q) < r2

Since 9B1/Og(q) ) < 0, then

min B1(g(q) ,p) = B1(r2,p) if r2 _ g(q)
L L( ) _g ( q) <g U q)

= B(guq),p) if r2 ? g q).

Expression (27) follows from substituting (28) for r2 in the inequality. If A(p)R I > 1 -

gL(q), then the roots are complex and OB1/89(q) < 0 for all 9(q) E [g(q), gy/q)] so that the

minimum occurs at 9(q) = gy$q). Moreover, complex roots imply that the condition in the

upper branch of (27) is always true, thus completing the proof. An analogous result holds

for B0(g(q),p). *

The availability of (26) and (27) for each q in 2 again provides. valuable

information to the Monte Carlo user prior to experimentation. In particular, it identifies

at which q adverse variance ratios may occur. However, measuring the statistical

efficiency of {g0 K(qp), qE.2} and {gAK(q,p), qE} as estimators of {9(q), qE2} calls for a

more elaborate analysis than that for estimation at a single point. In particular, the

sobering observation that R0 and R1 in (26) and (27) increases exponentially with 191

makes one circumspect about the benefit of the proposed method as the size of G grows.

We now show that this benefit is assured for finite w = £1 and number of edge types r,
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provided that p E.2.

Recall that 2 = {q 1,...,qw} where q. = (ql"'...,q .) and q.1 is the reliability assigned

to components of type i in the jth component reliability vector for j = 1,...,w. Let ,,M=

{1,...,r} and

,* = {i E M: pitqij for at least one j; j= 1,...,w},

so that I ,* I component reliability types vary in .2.

Algorithm A-R describes the steps for computing the estimates and provides the

basis for measuring efficiency. In addition to computing {g0 (qp), g, K(q,p); qE "}, it

computes {Vtg 0A(q,p)I, VlglK(q,p)]; qE.2} as unbiased estimators of {var 9goK(qp),

var gK(q~p); qE.2}. Observe that preprocessing in step 1 takes O(IM *1w) time,

postprocessing in step 3 takes O(w) time and, on each replication, sampling in step 2a takes

0(1 $1) time using Procedure Q in Fishman (1986), summation in step 2c takes

0( E k.) 0(1 .51) time and step 2d takes 0(1 o,*1 w) time. One can also show that the

mean total time for K replications using Algorithm A-R has the form

T({'oA q'P)gl(q'P)}= WO + w ~l*IW+ w2 w+ 4W3 - w41 S + a( 0O'P )/A (P)

+w51I*Iw+W 6 E kj
iE od6*

time where w0 ,...,w 6 denote machine dependent constants. To reduce numerical error, all

computation in step 3 should be performed in extended precision arithmetic.
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Algorith. A-R

Purpose: To estimate the reliability function {g(q), q E.

Input: Network G = (,8); number of type of components r; k. = number of components of

type i for i=1,...,r; sampling distribution {Q(z,p), z EA; c,*'* - set of component types

that vary in .2; lower and upper bounds {gL(q) g1 /q); qE .U {p}};

and number of independent replications K.

Output: {I0K(q,p), jlK~l,p), V9Aq~p)], Vj 1jK(qp)]; qE.4} as unbiased estimates of

{g(q), g(q), var j0K(,p), var 9,A(q,p); q EA.

Method:

1. Initialization

a. A(p) - ) - g(P).

b. For each q E.2 :

K(0,q) = K(1,q) 4 0.

For each i E M

ai(q) i- log[qi(1-pi)/pi(1-q)] and #i(q) - log(1-qi)/(1-pi)].

2. On each of K independent trials:

a. Sample Xj - 1,...,k. i - 1,...,r from {Q(zp)}.

b. Determine O(X).

k.
c. For each i E *: X. - E x..m~ 1 2

d. Sample Zfrom %((0,1).

e. For qE.J:

7() +- 0.

For each i Ec*: Tq) 4- T(q) + kiA(q) + Xiai(q).

R(X,q,p) -- exp[T(q)].

F(X,O(X),q,p) 4- R(Xp)/RO(x)(q,p ) .

9 O(X) (x, ,) - Lz + F(xo(x),qp)J.

K(O(X),q) - K(O(X),q) + o¢(X (,Z,q,p).

3. Computation of summary statistics

For each q E .2:

oK(q,p) 4- g9uq) - A(p)R0 (q,p)K(0,q)/K.

iIKWq*) gL(q) + A(p)RI(q,p)K(1,q)/K.

Vj9 0AKq,p)] 4- [A(p)R O(q,p)]2[K(O,)/A1[1-K(0,q)/A1/(K-1).

V[IAIK( - [A(p)RI(q,p)] 2[K(1,q)Ih1[I-K(,q)I1/(K-1).



-19-

Let us now compare this approach to estimating {9(q), q EI} with the alternative

approach based on the w point estimates (gK(,p)(q), q E LI using (4), where one chooses the

sample sizes {H(q,p), q E .2} to achieve equal variances under the two methods. That is,

var 9H(q,p)(q) = g(q)[1-g(q)J/H(qp) (29)

where

H(q,p) = K A(qp)

and

g(q)[ 1-9(q)]
A(qp) min var ij(XZqp)

jE{0,1}

Observe that

A(p,p) = g(p)[1-(p)]I[gy(p)-9(p)][(p)-gL(p)]

and, except in special cases, for any edge type i EX*

lir A(qp) =0 for q# p.
k.-to

Let

A(p) = A(q,p). (30)
qE I
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and observe that

lim A(p) A(p,p). (31)
k.-'

Therefore, the time ratio

A1(.2,p) = V'H(,,, (32)
T~O( q, ), (qp

where

T(0{H(,)q)= Y T(ig H(q,p)(q))q EI

measures the efficiency of the proposed method relative to using crude Monte Carlo

sampling with (4) w times to obtain estimates with equal variances var H(qP)(q) =

min var g.( q, p) for each qE I. As k increases, (32) assumes the form

.2 [a2 + a 3 ( -Wq) /kJ IA(q, p)
A I(.2,p )  q C (33)

W4 + 3 (.O%1 , p)/A(p)k +w6

a2+a3 (J,p)/k i

- 4+w6+a3 (,O IIP) IA(p)k

where the lower bound is analogous to (10). This implies that one should expect efficiency

to exceed that which obtains from estimating g(p) only. As the example in Section 9

shows, the realized efficiency can be considerably greater.
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6. Improving Computational Efficiency

The special, but common, case .2 = {ql<...<q.} provides an opportunity for

improving the computational efficiency of Algorithm A-R. Write F(z,i,q) for F(xi,qp)

defined in (16) and note that for fixed z and i

0 < F(zi,qw) < F(z,i,qw_l)<...<F(i,ql) < 1

so that {F(zi,q _,,1), j- 1,..., ; F(zi,)qo) 1} is a distribution function (d.f.). Suppose

that one draws X from {Q(z,p)} in (6) and Z from V(0,1), and let

W= min[z: F(X,),qw_,,+l) > Z1. (34)

Then (X,Z, qjp) = 1 for W < w and = 0 otherwise for j = 1,..., W.

Note that every component state with x. edges of type i for i = 1,...,r has either

I RF,qw_j,1 ); j= 1,...,w} or {F(z,1,qw_j+); j= 1,...,w) as its d.f. and there are m =

2 H * (k,+l) of these d.fs. If m is sufficiently small, as it will be if there are a small

number of component types, then before sampling begins one can compute these d.fs. and

use them to create tables needed for the cutpoint sampling method (Fishman and Moore

1984). On each trial, one samples W from these specially prepared tables in 0(1) time

regardless of how large w is. Algorithm A-R shows how to incorporate this alternative

sampling method. It replaces step 2e of Algorithm A-R, which takes O(K MY I w) time

with a new step 2e that takes O(I) time, thus reducing computing time per replication.
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Algorithm A-R

Purpose: To estimate the reliability function {g(q), q E. where I £ ql<...<qW) .

Input: Network G = (Yn) ; number of type of components r ; k. -= number of components of

type i for i=l,...,r ; sampling distribution {Q(zp), z E,4; V* -- set of component types

that vary in .2; lower and upper bounds {gL(f), g6q); IE.2U{p}}; and number of

independent replications K.

Output: 60K(qp), gliKq,p), V[l0K(qp)], qglK(qIP)]; q E.g2 as unbiased estimates of

{g(q), g(q), var g0Kq,p), var lK(qp); q E.1.

Method:

1. Initialization

a. A(p) .- gU(p) - gL(P).

b. For i=l,...,w: 7(O,i) = T(1,i) +- 0.

2. On each of K independent trials:

a. Sample Xiij--1,...,k i i=1,...,r from {Q(zp)}.

b. Determine O(X).

c. Sample Z from '(O,1).

d. W -min[z: F(XO(X), q _ 2]. (Fishman and Moore 1984).

e. 7(0(X), w) 4- r(0(X),w) + 1.

3. Computation of summary statistics

K(O,q) +- r(0,w) and K(1,qu) - (1,w).

For i-0,1:

For j=2,...,w: K(i,q W ) -1 K(i,q .WJ) + 7(i,w-jll).

Forj=J,...,w:

-g00f'p) guqj) - A(p)R 0 (qfp)K(O,q)/K.

lK(qfp) -gL(qj) + A(p)RI(qjp)K(1,qr)/K.

V i0K(qj, p))4[l]o )2KOq)IIK04.II(_)
S2j

Vl-gK~~qj~p)) 4-.ApR74j) [KI



-23-

7. Individual Confidence Intervals

Since

pr I'gKP(qp)-g(q) I < 2,t 1

where D(.) denotes the d.f. of the standard normal distribution, one can immediately

compute an approximating confidence interval for g(q). In particular, based on (qp)

and Theorem 1, one has the approximating 100x(1 - 6) percent confidence interval

g+[2gv~q)-A(pln0] 22 K { A ( p) n o02/ K 2+[g v ~ql - 'g [A (p l R o- g
d q)+i I / If } 1

1 + ?IKg

for g(q) where

0 -Z f e.-Y/2 dy =l_ -/2).

An analogous interval can be computed based on gl$q,p).

Because of the nonuniform convergence to normality, this approach inevitably

incurs an error of approximation. An alternative approach avoids this error, albeit at the

cost of a wider interval.

Theorem 5. Let

m(z,W) = zlog(w)/z) + (l-z) log[(1-w)/(1-z)] 0 < z, w< 1,

let w(z,6 /2,K) denote the solution to m(zw) = log(b/2) for fixed z E(0,11 and b E(0,1),
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and let

w*(z,6/2,K) = w z,6/2,K) if 0 < z 5 1

(35)

= 0 otherwise.

Then, the interval

i. (.q(q)-A(plRow* (-K(O,q)*K 2,K), g*q)-A(p)RoW*(K(O,q)1K,12,K)) (36a)

covers g(q) with probability > 1 - b

and

ii. (gL(q)+A(p)RI *(Kf(1,q)IK, l2,IK), gL(q)+A(p)Rla *(1-K(1,q)/K,61S2,,K))  (36b)

covers g(q) with probability > 1 - 6.

The proof exploits the observation that

pr[g1 /q)-A(p)R 0 < uo(X,Z,q,p) < gu$')1 = 1

and

pr[gL(q) pl(X,Z,q,p) gL(q) + A(p)R 1] = 1.

The resulting confidence intervals follow from Theorem 1 in Fishman (1988). *
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Since the slowest convergence to normality for g.,K(qp) occurs for g(q) close to

zero and unity and since one is often interested in g(q) near unity the wider confidence

intervals that result from this approach seem a reasonable price to pay to be free of the

error of approximation inherent in normal intervals. Since {m(zw)} is concave in w, one

can compute the required roots by bisection.

8. Simultaneous Confidence Intervals

Although each confidence interval in Section 7 holds with probability > 1-6, the

joint confidence intervals for {g(q), qE.2} hold simultaneously only with probability >

I - w6. This result follows from a Bonferroni inequality. See Miller (1981, p. 8). To

restore the joint confidence level to 1-6, one replaces 6/2 by b/2w in (36a) and (36b) and

determines the corresponding solutions. The effect of this substitution is to increase the

constant of proportionality in the approximate interval widths from [21og(2/ 6)] to
.1

[21og(2w/ 5)]2 (see Fishman 1988). For 6 = .01 and w= 20 one has [log(2w/b)/log(2/b)] =.

1.25. For b = .01 and w = 100, it is 1.37 and for 6 = .01 and w = 1000 it is 1.52. However,

if I denotes a continuous region in the I I -dimensional hypercube (0,1)1 15, then the

resulting confidence intervals have infinite widths and are therefore useless.

For the case Q = {ql< ... <qw}, an alternative approach derives simultaneous

confidence intervals for {g(q), qE2} by exploiting the fact that {K(O,qI)/I;, j= l,...,w}

and {K(1,q.)/K; j = 1,...,w}, in steps 3 of Algorithms A-R and A-R , satisfy the
definition of an empirical distribution function. Since

K- EK(O,q) = p(O,q) = [g= q)-9(q)J/A(p)R o

and
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K -EK(1,q) = p(l,q) = [g(q)-gL(q)/A(p)R 1 ,

pr{ n [ IK(O,q.)IK -p(O,q) I < dK(b)l} > 1-6

and

pr{ n [jK(1,q.)/K-p(1,q j < d/)]>1-
=1

where dK( 6) denotes the critical value of the Kolmogorov-Smirnov distribution for sample

size K at significance level 6. Therefore,

gu~q. -A(p)no(qip)[K(O,qy1Kidg(O) ]  Vj= 1, ... ,1w (37a)

cover g(q1),...,g(q,) simultaneously with probability _ 1 - 6 and similarly

gL(qj ) + A(p)RI(qjp)[K(1,q)I/KCdi() V j= 1,...,w (37b)

cover g(q,),...,g(q 1 ) with probability ? 1 - 6. For 6 = .05, 1 im KidK,(.05) = 1.3581 and for
K-to

for 6 = .01 1r K dK(.01) = 1.6276. Since d(.05)/dK(.05) 5 1.013 for K > 100 and
K-1o

d(.O01)/dK(.O1) < 1.014 for K > 80 (Birnbaum 1952), little error arises when replacing

dA(.05) by 1.3581/K2 and dK(.01) by 1.6276/K4 above for K > 100. The appeal of this

alternative approach is that the widths of the intervals are all independent of w. The

limitation is that all intervals are of the same width. In practice, one can compute the

intervals based on (36a) and (36b) with 6/2w replacing 612 and the intervals based on

(37a) and (37b), and choose the set with smaller widths.
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9. Example

An analysis of the network in Fig. 1 illustrates the proposed method. The network

has 30 edges and 20 nodes. The example assumes r=1 so that all edges have identical

reliabilities, allowing us to write q = q. Note that any other specification with r > 1 can

Insert Fig. 1 about here.

be accommodated easily. The objective is to estimate {g(q), q = .80 + .01(i-1)

i = 1,...,20} where g(q) = probability that nodes s = 1 and t = 20 are connected when edge

reliabilities are q. For sampling, we use p = p, again merely as a convenience. The lower

and upper bounding functions {9L(q)} and {gq(q)} were computed beforehand using

edge-disjoint minimal s-t cutsets for {gL(q) } and edge-disjoint minimal s-t cutsets for

{ggq)}, as in Fishman (1986). To determine these paths takes O(I] $) time, where I

denotes the size of the smallest minimal s-t cutset and to determine the paths takes

0(11 ) time. The determination of R0 and R1 is discussed in Fishman (1988). The

evaluation of O(X) using a depth-first search as in Aho, Hopcroft and Ullman (1974)

takes O(max(1 , 9I )) time.

An experiment was run with p = .80, which minimized the worst case variances as

in (24), and with sample size K = 220 = 1048576. Since results for {g0 A(4~P)} were

considerably more favorable than those for {gK(qp)} , the analysis focuses on Ig0A~qp)}.

Table 1 shows individual point estimates and confidence intervals, the latter having been

computed as in (36a). Table 2 compares the precomputed worst case and the empirically

observed coefficients of variation and variances, and Table 3 shows the worst case and

empirically observed variance ratios, where the variance in the numerator corresponds to

that for crude Monte Carlo sampling.

Recall that the worst case results can be computed and used prior to sampling. For

example, suppose that one wants a coefficient of variation no larger than u'. = .01 for all

point estimates. Since the largest worst case results in Table 2 is 10.13, one would use (25)
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to compute the worst case sample size n** = 1,008,016.

Insert Tables 1,2, and 3 about here.

In contrast to the exact results in col. 3 of Table 1 which took slightly more than

one hour each to compute, all results in cols. 4 through 8 took 74.9 minutes to compute in

total, or 4.28 milliseconds per replication. Whereas the calculated exact results in col. 3

are accurate to sixteen significant digits (reduced to four digits here for comparative

purposes), the confidence intervals suggest an accuracy to two significant digits at the .99

level. If two significant digits is acceptable for purposes of analysis, then the Monte Carlo

approach clearly prevails.

An experiment with K = 1048576 was also run using Algorithm A-R. It, of course,

gave statistical results close to those that Algorithm A-R produced. However, it took 36.6

minutes or 2.09 milliseconds per replication revealing a substantial increase in computing

efficiency.

10. A Comparison

At least one alternative method exists for using the data from a single experiment

with input vector p to generate estimates of {g(q), qE.2}. This method is based on using

the importance function (13) to form

oa(z~q'p) = 9L(q) + A(p)O(x)R(~q,p)

and

V56(z,q,p) = 9g/q) + A(p)[1-O(x)]R(;q,p)
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so that *a (X,q,p) and 41b(X,q,p) both have expectation g(q) when X is from {Q(;p)}.

Fishman (1987) studies these estimates in detail using the same network, and a comparison

between these importance function (IF) and the currently proposed acceptance-rejection

(A-R) estimators seems appropriate.

For every q E2, the IF estimators have smaller variance than the A-R estimators

do and both methods have about the same computation time per replication. If variance is

the dominant consideration, then the IF method prevails. However, there are other issues

that also deserve consideration. The A-R estimators have considerably simpler expressions

for variance and coefficient of variation than the IF estimators do. Also, on each trial

Ao(X,Z,q,p) and p1 (X,Z,q,p) for the A-R approach each assume binary values thus

allowing standard techniques of analysis for binary data to apply. In contrast ?Pa(X,q,p)

and ?Pb(X,q,p) in the IF approach each assume O( H (k+1) values precluding the use of
2=1

the simpler analysis.

With regard to confidence intervals, the A-R approach allows one to compute

individual asymptotically normal intervals without nuisance parameters whereas the IF

estimators do not. Foi ,ndividual confidence intervals based on Theorem 5, both methods

give intervals of about the same length. This is a consequence of ignoring estimated

variance information for the IF method. For simultaneous confidence intervals the A-R

method allows the development in Section 8 when q1,...,qw, whereas the IF method does

not.
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Table 2

Coefficients of Variation and Variances

(p = .80)

[var p (XZ,q,p)]i var p(XZqp)

70(q'P) = 1 - Eo0 (X,Z,q,p)

q Worst Caset Observedtt Worst Casettt Observedtt

.80 2.06 2.02 .207D-01 .539D-02

.81 2.37 2.35 .262D-01 .491D-02

.82 2.72 2.72 .322D-01 .432D-02

.83 3.11 3.11 .383D-01 .368D-02

.84 3.53 3.53 .435D-01 .303D-02

.85 4.00 3.93 .455D-01 .239D-02

.86 4.51 4.46 .443D-01 .181D-02

.87 5.06 4.95 .406D-01 .128D-02

.88 5.64 5.44 .349D-01 .876D-03

.89 6.26 5.93 .282D-01 .567D-03

.90 6.91 6.37 .212D-01 .335D-03

.91 7.57 6.74 .147D-01 .182D-03

.92 8.23 7.08 .928D-02 .918D-04

.93 8.87 7.37 .520D-02 .423D-04

.94 9.44 7.41 .250D-02 .156D-04

.95 9.89 7.29 .982D-03 .473D-05

.96 10.13 6.76 .287D-03 .983D-06

.97 10.04 5.95 .527D-04 .127D-06

.98 9.37 4.59 .415D-05 .617D-08

.99 7.55 2.69 .396D-07 .308D-10

t Computed from (21). tt Estimated from data. ttt Computed from (20).
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Table 3

Variance Ratios

var 9g(q)

var gOK(q,p)

q Worst Caset Observedtt

.80 5.15 6.48

.81 4.32 5.88

.82 3.71 5.47

.83 3.27 5.20

.84 2.95 5.06

.85 2.75 5.07

.86 2.60 5.21

.87 2.54 5.61

.88 2.56 6.18

.89 2.68 7.06

.90 2.91 8.55

.91 3.31 10.95

.92 3.97 14.73

.93 5.10 20.81

.94 7.14 34.12

.95 11.23 63.00

.96 20.88 149.23

.97 50.53 471.61

.98 197.50 2771.75

.99 2490.13 67040.00

t Computed from (27). tt Estimated from data.
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